My Blog List

My Blog List

Powered By Blogger
Powered By Blogger

Translate

Search This Blog

Popular Posts

Popular Posts

title

Go to Blogger edit .

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

adsbygoogle

Health&personal care

Propellerads

shop now

Showing posts with label Other infectious diseases. Show all posts
Showing posts with label Other infectious diseases. Show all posts

Thursday 13 November 2014

ebola virus prevention and treatment 2014

ebola virus prevention and treatment


Prevention and control

 Good outbreak control relies on applying a package of interventions, namely case management, surveillance and contact tracing, a good laboratory service, safe burials and social mobilisation. Community engagement is key to successfully controlling outbreaks. Raising awareness of risk factors for Ebola infection and protective measures that individuals can take is an effective way to reduce human transmission. Risk reduction messaging should focus on several factors:
 ebola virus prevention and treatment 2014
    ebola virus prevention and treatment 2014
  • Reducing the risk of wildlife-to-human transmission from contact with infected fruit bats or monkeys/apes and the consumption of their raw meat. Animals should be handled with gloves and other appropriate protective clothing. Animal products (blood and meat) should be thoroughly cooked before consumption.
  • Reducing the risk of human-to-human transmission from direct or close contact with people with Ebola symptoms, particularly with their bodily fluids. Gloves and appropriate personal protective equipment should be worn when taking care of ill patients at home. Regular hand washing is required after visiting patients in hospital, as well as after taking care of patients at home.
  • Outbreak containment measures including prompt and safe burial of the dead, identifying people who may have been in contact with someone infected with Ebola, monitoring the health of contacts for 21 days, the importance of separating the healthy from the sick to prevent further spread, the importance of good hygiene and maintaining a clean environment.
  •  ebola virus prevention and treatment 2014

Controlling infection in health-care settings:

Health-care workers should always take standard precautions when caring for patients, regardless of their presumed diagnosis. These include basic hand hygiene, respiratory hygiene, use of personal protective equipment (to block splashes or other contact with infected materials), safe injection practices and safe burial practices.
Health-care workers caring for patients with suspected or confirmed Ebola virus should apply extra infection control measures to prevent contact with the patient’s blood and body fluids and contaminated surfaces or materials such as clothing and bedding. When in close contact (within 1 metre) of patients with EBV, health-care workers should wear face protection (a face shield or a medical mask and goggles), a clean, non-sterile long-sleeved gown, and gloves (sterile gloves for some procedures).
Laboratory workers are also at risk. Samples taken from humans and animals for investigation of Ebola infection should be handled by trained staff and processed in suitably equipped laboratories.




ebola virus prevention and treatment 2014





Treatment and vaccines

 Supportive care-rehydration with oral or intravenous fluids- and treatment of specific symptoms, improves survival. There is as yet no proven treatment available for EVD. However, a range of potential treatments including blood products, immune therapies and drug therapies are currently being evaluated. No licensed vaccines are available yet, but 2 potential vaccines are undergoing human safety testing.

ebola virus prevention and treatment 2014  

EVD has a high risk of death in those infected which varies between 25 percent and 90 percent of those infected. As of September 2014, the average risk of death among those infected is 50 percent. The highest risk of death was 90 percent in the 2002–2003 Republic of the Congo outbreak.
Death, if it occurs, follows typically six to sixteen days after symptoms appear and is often due to low blood pressure from fluid loss. Early supportive care to prevent dehydration may reduce the risk of death.
If an infected person survives, recovery may be quick and complete. Prolonged cases are often complicated by the occurrence of long-term problems, such as inflammation of the testicles, joint pains, muscle pains, skin peeling, or hair loss. Eye symptoms, such as light sensitivity, excess tearing, iritis, iridocyclitis, choroiditis, and blindness have also been described.

No specific treatment is currently approved. However, survival is improved by early supportive care with rehydration and symptomatic treatment. Treatment is primarily supportive in nature. These measures may include management of pain, nausea, fever and anxiety, as well as rehydration via the oral or by intravenous route.The World Health Organization recommends avoiding the use of aspirin or ibuprofen for pain due to the bleeding risk associated with use of these medications. Blood products such as packed red blood cells, platelets or fresh frozen plasma may also be used. Other regulators of coagulation have also been tried including heparin in an effort to prevent disseminated intravascular coagulation and clotting factors to decrease bleeding. Antimalarial medications and antibiotics are often used before the diagnosis is confirmed, though there is no evidence to suggest such treatment is in any way helpful. Interferon therapies have been tried as a form of treatment for EVD, but were found to be ineffective.
If professional care is not possible, guidelines by WHO for care at home have been relatively successful. In such situations, recommendations include using towels soaked in bleach solutions when moving infected people or bodies and applying bleach on stains. It is also recommended that the caregivers wash hands with bleach solutions and cover their mouth and nose with a cloth.
 ebola virus prevention and treatment 2014

Intensive care

Intensive care is often used in the developed world.This may include maintaining blood volume and electrolytes (salts) balance as well as treating any bacterial infections that may develop. Dialysis may be needed for kidney failure, and extracorporeal membrane oxygenation may be used for lung dysfunction.

 ebola virus prevention and treatment 2014

Alternative medicine

The Food and Drug Administration (FDA) advises people to be careful of advertisements making unverified or fraudulent claims of benefits supposedly gained from various anti-Ebola products. The FDA has already sent out at least one letter of warning to a seller of colloidal silver who made unverified claims of Ebola related benefits, supposedly derived from the use of their products.

 ebola virus prevention and treatment 2014


Reference


  1. "Ebola (Ebola Virus Disease) Transmission". CDC. 5 November 2014. Retrieved 7 November 2014.
  2. Drazen, J.M.; Kanapathipillai R.; Campion E.W.; Rubin E.J.; Hammer S.M.; Morrissey S.; Baden L.R. (2014) "Ebola and Quarantine." N Engl J Med. October 27, 2014 Epub ahead of print PMID25347231 
  3. "Q&A on Transmission, Ebola". CDC. September 2014. Retrieved 3 October 2014.
  4. Donald G. McNeil Jr. (3 October 2014). "Ask Well: How Does Ebola Spread? How Long Can the Virus Survive?". The New York Times. Retrieved 24 October 2014.
  5. "How Ebola Is Spread" (PDF). Centers for Disease Control and Prevention (CDC). November 1, 2014.
  6. "Transmission". CDC. 17 October 2014. Retrieved 18 October 2014.
  7. Chowell G, Nishiura H (October 2014). "Transmission dynamics and control of Ebola virus disease (EVD): a review". BMC Med 12 (1): 196. doi:10.1186/s12916-014-0196-0. PMC 4207625. PMID 25300956.
  8. "CDC Telebriefing on Ebola outbreak in West Africa". CDC. 28 July 2014. Retrieved 3 August 2014.
  9. "Air travel is low-risk for Ebola transmission". WHO. 14 August 2014.
  10. Chan M (September 2014). "Ebola virus disease in West Africa—no early end to the outbreak". N Engl J Med 371 (13): 1183–5. doi:10.1056/NEJMp1409859. PMID 25140856.
  11. "Sierra Leone: a traditional healer and a funeral". World Health Organization. Retrieved 6 October 2014.
  12. Tiaji Salaam-Blyther (26 August 2014). "The 2014 Ebola Outbreak: International and U.S. Responses" (pdf). Retrieved 9 September 2014.
  13. Lashley, Felissa R.; Durham, Jerry D., eds. (2007). Emerging infectious diseases trends and issues (2nd ed.). New York: Springer. p. 141. ISBN 9780826103505.
  14. Alan J. Magill, G. Thomas Strickland, James H. Maguire, Edward T Ryan, Tom Solomon, ed. (2013). Hunter's tropical medicine and emerging infectious disease (9th ed.). London, New York: Elsevier. pp. 170–172. OCLC 822525408.
  15. "Questions and Answers on Ebola | Ebola Hemorrhagic Fever | CDC". CDC.
  16. "Ebola in Texas: Second Health Care Worker Tests Positive". 15 October 2014.
  17. Irving WL (August 1995). "Ebola virus transmission". International Journal of Experimental Pathology 76 (4): 225–6. PMC 1997188. PMID 7547434.
  18. "Risk of Exposure". CDC. 12 October 2014. Retrieved 18 October 2014.
  19. "FAO warns of fruit bat risk in West African Ebola epidemic". fao.org. 21 July 2014. Retrieved 22 October 2014.
  20. Williams E. "African monkey meat that could be behind the next HIV". Health News – Health & Families. The Independent. "25 people in Bakaklion, Cameroon killed due to eating of ape"
  21. "Ebolavirus – Pathogen Safety Data Sheets". Public Health Agency of Canada. Retrieved 22 August 2014.
  22. Gonzalez JP, Pourrut X, Leroy E (2007). "Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission". Current Topics in Microbiology and Immunology. Ebolavirus and other filoviruses 315: 363–387. doi:10.1007/978-3-540-70962-6_15. ISBN 978-3-540-70961-9. PMID 17848072.
  23. Weingartl HM, Nfon C, Kobinger G (May 2013). "Review of Ebola virus infections in domestic animals". Dev Biol (Basel) 135: 211–8. doi:10.1159/000178495. PMID 23689899.
  24. Laupland KB, Valiquette L (May 2014). "Ebola virus disease". Can J Infect Dis Med Microbiol 25 (3): 128–9. PMC 4173971. PMID 25285105.

ebola virus Diagnosis 2014

ebola virus Diagnosis

It can be difficult to distinguish EVD from other infectious diseases such as malaria, typhoid fever and meningitis. Confirmation that symptoms are caused by Ebola virus infection are made using the following investigations:
    ebola virus Diagnosis 2014
  • antibody-capture enzyme-linked immunosorbent assay (ELISA)
  • antigen-capture detection tests
  • serum neutralization test
  • reverse transcriptase polymerase chain reaction (RT-PCR) assay
  • electron microscopy
  • virus isolation by cell culture.
Samples from patients are an extreme biohazard risk; laboratory testing on non-inactivated samples should be conducted under maximum biological containment conditions.
When EVD is suspected in a person, his or her travel and work history, along with an exposure to wildlife, are important factors to consider for possible further medical examination.

ebola virus Diagnosis 2014 

 laboratory testing

Possible laboratory indicators of EVD include a low platelet count; an initially decreased white blood cell count followed by an increased white blood cell count; elevated levels of the liver enzymes alanine aminotransferase (ALT) and aspartate aminotransferase (AST); and abnormalities in blood clotting often consistent with disseminated intravascular coagulation (DIC) such as a prolonged prothrombin time, partial thromboplastin time, and bleeding time.
ebola virus Diagnosis 2014

ebola virus Diagnosis 2014




ebola virus Diagnosis 2014



The diagnosis of EVD is confirmed by isolating the virus, detecting its RNA or proteins, or detecting antibodies against the virus in a person's blood. Isolating the virus by cell culture, detecting the viral RNA by polymerase chain reaction (PCR) and detecting proteins by enzyme-linked immunosorbent assay (ELISA) are methods best used in the early stages of the disease and also for detecting the virus in human remains. Detecting antibodies against the virus is most reliable in the later stages of the disease and in those who recover.
During an outbreak, isolation of the virus via cell culture methods is often not feasible. In field or mobile hospitals, the most common and sensitive diagnostic methods are real-time PCR and ELISA. In 2014, with new mobile testing facilities deployed in parts of Liberia, test results were obtained 3–5 hours after sample submission.
Filovirions, such as EBOV, may be identified by their unique filamentous shapes in cell cultures examined with electron microscopy, but this method cannot distinguish the various filoviruses.

 ebola virus Diagnosis 2014

Differential diagnosis

Early symptoms of EVD may be similar to those of other diseases common in Africa, including malaria and dengue fever. The symptoms are also similar to those of Marburg virus disease and other viral hemorrhagic fevers.
The complete differential diagnosis is extensive and requires consideration of many other infectious diseases such as typhoid fever, shigellosis, rickettsial diseases, cholera, sepsis, borreliosis, EHEC enteritis, leptospirosis, scrub typhus, plague, Q fever, candidiasis, histoplasmosis, trypanosomiasis, visceral leishmaniasis, measles and viral hepatitis among others.
Non-infectious diseases that may result in symptoms similar to those of EVD include acute promyelocytic leukemia, hemolytic uremic syndrome, snake envenomation, clotting factor deficiencies/platelet disorders, thrombotic thrombocytopenic purpura, hereditary hemorrhagic telangiectasia, Kawasaki disease and warfarin poisoning.


References


  1. WHO. "Ebola virus disease".
  2. Angier, Natalie (October 27, 2014). "Killers in a Cell but on the Loose - Ebola and the Vast Viral Universe". New York Times. Retrieved October 27, 2014.
  3. Nanbo, Asuka; Watanabe, Shinji; Halfmann, Peter; Kawaoka, Yoshihiro (4 Feb 2013). "The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells". Nature 3: 1206. Bibcode:2013NatSR...3E1206N. doi:10.1038/srep01206.
  4. Klenk & Feldmann 2004, p. 28.
  5. Feldmann, H. K. (1993). "Molecular biology and evolution of filoviruses". Archives of virology. Supplementum 7: 81–100. ISSN 0939-1983. PMID 8219816. 
  6. Biomarker Database. Ebola virus. Korea National Institute of Health. Retrieved 2009-05-31.
  7. Klenk, H-D; Feldmann, H (editor) (2004). Ebola and Marburg Viruses: Molecular and Cellular Biology. Horizon Bioscience. ISBN 978-1-904933-49-6.
  8. Taylor, D.; Leach, R.; Bruenn, J. (2010). "Filoviruses are ancient and integrated into mammalian genomes". BMC Evolutionary Biology 10: 193. doi:10.1186/1471-2148-10-193. PMC 2906475. PMID 20569424. 
  9. Belyi, V. A.; Levine, A. J.; Skalka, A. M. (2010). Buchmeier, Michael J., ed. "Unexpected Inheritance: Multiple Integrations of Ancient Bornavirus and Ebolavirus/Marburgvirus Sequences in Vertebrate Genomes". PLoS Pathogens 6 (7): e1001030. doi:10.1371/journal.ppat.1001030. PMC 2912400. PMID 20686665. 
  10. Taylor, D. J.; Ballinger, M. J.; Zhan, J. J.; Hanzly, L. E.; Bruenn, J. A. (2014). "Evidence that ebolaviruses and cuevaviruses have been diverging from marburgviruses since the Miocene". PeerJ 2: e556. doi:10.7717/peerj.556. 
  11. Richard Preston (27 October 2014). "The Ebola Wars". The NewYorker (New York: Condé Nast). Retrieved 20 October 2014.
  12. Stephen K. Gire with 57 others (2014). "Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak". Science (journal) 345 (6202): 1369–1372. doi:10.1126/science.1259657.
  13. Jenkins, G. M.; Rambaut, A; Pybus, O. G.; Holmes, E. C. (2002). "Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis". Journal of Molecular Evolution 54 (2): 156–65. doi:10.1007/s00239-001-0064-3. PMID 11821909. 
  14. Tracking a Serial Killer: Could Ebola Mutate to Become More Deadly? David Quammen, National Geographic News, 15 October 2014
  15. Ebola 2014 is Mutating as Fast as Seasonal Flu. Operonlabs.com, 16 October 2014
  16. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR; Raaben; Wong; Herbert; Obernosterer; Mulherkar; Kuehne; Kranzusch; Griffin; Ruthel; Dal Cin; Dye; Whelan; Chandran; Brummelkamp (September 2011). "Ebola virus entry requires the cholesterol transporter Niemann-Pick C1". Nature 477 (7364): 340–3. Bibcode:2011Natur.477..340C. doi:10.1038/nature10348. PMC 3175325. PMID 21866103. Lay summary – New York Times.
  17. Côté M, Misasi J, Ren T, Bruchez A, Lee K, Filone CM, Hensley L, Li Q, Ory D, Chandran K, Cunningham J; Misasi; Ren; Bruchez; Lee; Filone; Hensley; Li; Ory; Chandran; Cunningham (September 2011). "Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection". Nature 477 (7364): 344–8. Bibcode:2011Natur.477..344C. doi:10.1038/nature10380. PMC 3230319. PMID 21866101. Lay summary – New York Times.
  18. Flemming A (October 2011). "Achilles heel of Ebola viral entry". Nat Rev Drug Discov 10 (10): 731. doi:10.1038/nrd3568. PMID 21959282.
  19. Miller EH, Obernosterer G, Raaben M, Herbert AS, Deffieu MS, Krishnan A, Ndungo E, Sandesara RG, Carette JE, Kuehne AI, Ruthel G, Pfeffer SR, Dye JM, Whelan SP, Brummelkamp TR, Chandran K; Obernosterer; Raaben; Herbert; Deffieu; Krishnan; Ndungo; Sandesara; Carette; Kuehne; Ruthel; Pfeffer; Dye; Whelan; Brummelkamp; Chandran (March 2012). "Ebola virus entry requires the host-programmed recognition of an intracellular receptor". EMBO Journal 31 (8): 1947–60. doi:10.1038/emboj.2012.53. PMC 3343336. PMID 22395071.
  20. Kondratowicz AS, Lennemann NJ, Sinn PL et al. (May 2011). "T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus". Proceedings of the National Academy of Sciences of the United States of America 108 (20): 8426–31. doi:10.1073/pnas.1019030108. PMC 3100998. PMID 21536871

ebola virus | cause 2014

ebola virus cause & Transmissionebola virus cause 2014

EVD in humans is caused by four of five viruses of the genus Ebolavirus. The four are Bundibugyo virus (BDBV), Sudan virus (SUDV), Taï Forest virus (TAFV) and one simply called Ebola virus (EBOV, formerly Zaire Ebola virus). EBOV, species Zaire ebolavirus, is the most dangerous of the known EVD-causing viruses, and is responsible for the largest number of outbreaks. The fifth virus, Reston virus (RESTV), is not thought to cause disease in humans, but has caused disease in other primates. All five viruses are closely related to marburgviruses.





ebola virus cause 2014




  
Between people, Ebola disease spreads only by direct contact with the blood or body fluids of a person who has developed symptoms of the disease. Body fluids that may contain ebolaviruses include saliva, mucus, vomit, feces, sweat, tears, breast milk, urine and semen. The WHO states that only people who are very sick are able to spread Ebola disease in saliva, and whole virus has not been reported to be transmitted through sweat. Most people spread the virus through blood, feces and vomit. Entry points for the virus include the nose, mouth, eyes, open wounds, cuts and abrasions. Ebola may be spread through large droplets; however, this is believed to occur only when a person is very sick. This can happen if a person is splashed with droplets. Contact with surfaces or objects contaminated by the virus, particularly needles and syringes, may also transmit the infection. The virus is able to survive on objects for a few hours in a dried state and can survive for a few days within body fluids.
 ebola virus cause 2014



The Ebola virus may be able to persist for up to 7 weeks in the semen of survivors after they recovered, which could lead to infections via sexual intercourse. Ebola may also occur in the breast milk of women after recovery, and it is not known when it is safe to breastfeed again. Otherwise, people who have recovered are not infectious.
The potential for widespread infections in countries with medical systems capable of observing correct medical isolation procedures is considered low. Usually when someone has symptoms of the disease, they are unable to travel without assistance.
Dead bodies remain infectious; thus, people handling human remains in practices such as traditional burial rituals or more modern processes such as embalming are at risk. 60% of the cases of Ebola infections in Guinea during the 2014 outbreak are believed to have been contracted via unprotected (or unsuitably protected) contact with infected corpses during certain Guinean burial rituals.
Health-care workers treating those who are infected are at greatest risk of getting infected themselves. The risk increases when these workers do not have appropriate protective clothing such as masks, gowns, gloves and eye protection; do not wear it properly; or handle contaminated clothing incorrectly. This risk is particularly common in parts of Africa where health systems function poorly and where the disease mostly occurs. Hospital-acquired transmission has also occurred in some African countries resulting from the reuse of needles. Some health-care centers caring for people with the disease do not have running water. In the United States the spread to two medial workers treating an infected patients prompted criticism of inadequate training and procedures.
Human to human transmission of EBOV through the air has not been reported to occur during EVD outbreaks and airborne transmission has only been demonstrated in very strict laboratory conditions in non-human primates. The apparent lack of airborne transmission among humans may be due to levels of the virus in the lungs that are insufficient to cause new infections. Spread of EBOV by water or food, other than bushmeat, has also not been observed. No spread by mosquitos or other insects has been reported.

ebola virus cause 2014
Although it is not entirely clear how Ebola initially spreads from animals to humans, the spread is believed to involve direct contact with an infected wild animal or fruit bat. Besides bats, other wild animals sometimes infected with EBOV include several monkey species, chimpanzees, gorillas, baboons and duikers.
Animals may become infected when they eat fruit partially eaten by bats carrying the virus. Fruit production, animal behavior and other factors may trigger outbreaks among animal populations.
Evidence indicates that both domestic dogs and pigs can also be infected with EBOV. Dogs do not appear to develop symptoms when they carry the virus, and pigs appear to be able to transmit the virus to at least some primates. Although some dogs in an area in which a human outbreak occurred had antibodies to EBOV, it is unclear whether they played a role in spreading the disease to people.

The natural reservoir for Ebola has yet to be confirmed; however, bats are considered to be the most likely candidate species. Three types of fruit bats (Hypsignathus monstrosus, Epomops franqueti and Myonycteris torquata) were found to possibly carry the virus without getting sick. As of 2013, whether other animals are involved in its spread is not known. Plants, arthropods and birds have also been considered possible viral reservoirs.
Bats were known to roost in the cotton factory in which the first cases of the 1976 and 1979 outbreaks were observed, and they have also been implicated in Marburg virus infections in 1975 and 1980. Of 24 plant and 19 vertebrate species experimentally inoculated with EBOV, only bats became infected. The bats displayed no clinical signs of disease, which is considered evidence that these bats are a reservoir species of EBOV. In a 2002–2003 survey of 1,030 animals including 679 bats from Gabon and the Republic of the Congo, 13 fruit bats were found to contain EBOV RNA. Antibodies against Zaire and Reston viruses have been found in fruit bats in Bangladesh, suggesting that these bats are also potential hosts of the virus and that the filoviruses are present in Asia.

Between 1976 and 1998, in 30,000 mammals, birds, reptiles, amphibians and arthropods sampled from regions of EBOV outbreaks, no Ebola virus was detected apart from some genetic traces found in six rodents (belonging to the species Mus setulosus and Praomys) and one shrew (Sylvisorex ollula) collected from the Central African Republic. However, further research efforts have not confirmed rodents as a reservoir. Traces of EBOV were detected in the carcasses of gorillas and chimpanzees during outbreaks in 2001 and 2003, which later became the source of human infections. However, the high rates of death in these species resulting from EBOV infection make it unlikely that these species represent a natural reservoir for the virus.

ebola virus cause 2014  
It is thought that fruit bats of the Pteropodidae family are natural Ebola virus hosts. Ebola is introduced into the human population through close contact with the blood, secretions, organs or other bodily fluids of infected animals such as chimpanzees, gorillas, fruit bats, monkeys, forest antelope and porcupines found ill or dead or in the rainforest.
Ebola then spreads through human-to-human transmission via direct contact (through broken skin or mucous membranes) with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids.
Health-care workers have frequently been infected while treating patients with suspected or confirmed EVD. This has occurred through close contact with patients when infection control precautions are not strictly practiced.
ebola virus cause 2014  

Burial ceremonies in which mourners have direct contact with the body of the deceased person can also play a role in the transmission of Ebola.
People remain infectious as long as their blood and body fluids, including semen and breast milk, contain the virus. Men who have recovered from the disease can still transmit the virus through their semen for up to 7 weeks after recovery from illness.

References

  1. Bardi, Jason Socrates. "Death Called a River". The Scripps Research Institute. Retrieved 9 October 2014.
  2. "Ebola death toll tops 4,000 - WHO". http://indiarocks.co.in. http://Indiarocks.co.in. Retrieved 27 October 2014.
  3. Gina Kolata (Oct 30, 2014). "Genes Influence How Mice React to Ebola, Study Says in ‘Significant Advance’". New York Times. Retrieved Oct 30, 2014.
  4. Angela L. Rasmussen with 21 others (Oct 30, 2014). "Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance". Science (journal). doi:10.1126/science.1259595. Retrieved Oct 30, 2014.
  5. http://www.bbc.com/news/magazine-28262541
  6. Johnson, K. M.; Webb, P. A.; Lange, J. V.; Murphy, F. A. (1977). "Isolation and partial characterisation of a new virus causing haemorrhagic fever in Zambia". Lancet 309 (8011): 569–71. doi:10.1016/s0140-6736(77)92000-1. PMID 65661.
  7. Netesov, S. V.; Feldmann, H.; Jahrling, P. B.; Klenk, H. D.; Sanchez, A. (2000). "Family Filoviridae". In van Regenmortel, M. H. V.; Fauquet, C. M.; Bishop, D. H. L.; Carstens, E. B.; Estes, M. K.; Lemon, S. M.; Maniloff, J.; Mayo, M. A.; McGeoch, D. J.; Pringle, C. R.; Wickner, R. B. Virus Taxonomy—Seventh Report of the International Committee on Taxonomy of Viruses. San Diego, USA: Academic Press. pp. 539–48. ISBN 0-12-370200-3{{inconsistent citations}}
  8. Pringle, C. R. (1998). "Virus taxonomy-San Diego 1998". Archives of Virology 143 (7): 1449–59. doi:10.1007/s007050050389. PMID 9742051.
  9. Feldmann, H.; Geisbert, T. W.; Jahrling, P. B.; Klenk, H.-D.; Netesov, S. V.; Peters, C. J.; Sanchez, A.; Swanepoel, R.; Volchkov, V. E. (2005). "Family Filoviridae". In Fauquet, C. M.; Mayo, M. A.; Maniloff, J.; Desselberger, U.; Ball, L. A. Virus Taxonomy—Eighth Report of the International Committee on Taxonomy of Viruses. San Diego, USA: Elsevier/Academic Press. pp. 645–653. ISBN 0-12-370200-3.
  10. Mayo, M. A. (2002). "ICTV at the Paris ICV: results of the plenary session and the binomial ballot". Archives of Virology 147 (11): 2254–60. doi:10.1007/s007050200052.
  11. "Replace the species name Lake Victoria marburgvirus with Marburg marburgvirus in the genus Marburgvirus".
  12. International Committee on Taxonomy of Viruses. "Virus Taxonomy: 2013 Release".
  13. Wahl-Jensen, V.; Kurz, S. K.; Hazelton, P. R.; Schnittler, H.-J.; Stroher, U.; Burton, D. R.; Feldmann, H. (2005). "Role of Ebola Virus Secreted Glycoproteins and Virus-Like Particles in Activation of Human Macrophages". Journal of Virology 79 (4): 2413. doi:10.1128/JVI.79.4.2413-2419.2005. PMID 15681442.
  14. Kesel, A. J.; Huang, Z; Murray, M. G.; Prichard, M. N.; Caboni, L; Nevin, D. K.; Fayne, D; Lloyd, D. G.; Detorio, M. A.; Schinazi, R. F. (2014). "Retinazone inhibits certain blood-borne human viruses including Ebola virus Zaire". Antiviral Chemistry and Chemotherapy 23 (5): 197–215. doi:10.3851/IMP2568. PMID 23636868.
  15. Richardson JS, Dekker JD, Croyle MA, Kobinger GP (June 2010). "Recent advances in Ebolavirus vaccine development". Human Vaccines (open access) 6 (6): 439–49. doi:10.4161/hv.6.6.11097. PMID 20671437.
  16. "Statement on the WHO Consultation on potential Ebola therapies and vaccines". WHO. 5 September 2014. Retrieved 1 October 2014.
  17. "2014 Ebola Outbreakin West Africa". Retrieved Oct 2014.
  18. Alison P. Galvani with three others (21 August 2014). "Ebola Vaccination: If Not Now, When?". Annals of Internal Medicine. doi:10.7326/M14-1904.

ebola virus 2014 signs and symptoms

signs and symptoms ebola virus 2014 signs and symptoms

The length of time between exposure to the virus and the development of symptoms of the disease is usually 2 to 21 days. PLOS reports that the average time is 11.4 days from exposure with about one chance in forty that a given infected person will not show symptoms after more than 21 days.




Symptoms usually begin with a sudden influenza-like stage characterized by feeling tired, fever, pain in the muscles and joints, headache, and sore throat. The fever is usually higher than 38.3 °C (100.9 °F). This is often followed by vomiting, diarrhea and abdominal pain. Next, shortness of breath and chest pain may occur, along with swelling, headaches and confusion. In about half of the cases, the skin may develop a maculopapular rash (a flat red area covered with small bumps).


In some cases, internal and external bleeding may occur. This typically begins five to seven days after the first symptoms. All infected people show some decreased blood clotting.Bleeding from mucous membranes or from sites of needle punctures has been reported in 40–50 percent of cases. This may result in the vomiting of blood, coughing up of blood or blood in stool.Bleeding into the skin may create petechiae, purpura, ecchymoses or hematomas (especially around needle injection sites). Bleeding into the whites of the eyes may also occur. Heavy bleeding is uncommon, and if it occurs, it is usually located within the gastrointestinal tract.
 ebola virus 2014 signs and symptoms

Recovery may begin between 7 and 14 days after the start of symptoms. Death, if it occurs, follows typically 6 to 16 days from the start of symptoms and is often due to low blood pressure from fluid loss. In general, bleeding often indicates a worse outcome, and this blood loss may result in death. People are often in a coma near the end of life. Those who survive often have ongoing muscle and joint pain, liver inflammation, and decreased hearing among other difficulties.

ebola virus 2014 signs and symptoms







ebola virus 2014 signs and symptoms

ebola virus 2014 signs and symptoms

ebola virus 2014 signs and symptoms






EVD in humans is caused by four of five viruses of the genus Ebolavirus. The four are Bundibugyo virus (BDBV), Sudan virus (SUDV), Taï Forest virus (TAFV) and one simply called Ebola virus (EBOV, formerly Zaire Ebola virus). EBOV, species Zaire ebolavirus, is the most dangerous of the known EVD-causing viruses, and is responsible for the largest number of outbreaks. The fifth virus, Reston virus (RESTV), is not thought to cause disease in humans, but has caused disease in other primates. All five viruses are closely related to marburgviruses.
ebola virus 2014 signs and symptoms 















References


  1. "EBOLA RESPONSE ROADMAP SITUATION REPORT UPDATE". World Health organization. 12 November 2014. Retrieved 12 November 2014.
  2. "Sierra Leone: EBOLA OUTBREAK UPDATES---November 9, 2014". 9 November 2014. Retrieved 12 November 2014.
  3. "Ebola Hemorrhagic Fever Signs and Symptoms". CDC. 28 January 2014. Retrieved 2 August 2014.
  4. Charles N. Haas (14 October 2014). "On the Quarantine Period for Ebola Virus". PLoS Current Outbreaks. PLOS. doi:10.1056/NEJMoa1411100. PMID 25244186. Retrieved 13 November 2014.
  5. Gatherer D (August 2014). "The 2014 Ebola virus disease outbreak in West Africa". J. Gen. Virol. 95 (Pt 8): 1619–1624. doi:10.1099/vir.0.067199-0. PMID 24795448.
  6. Magill, Alan (2013). Hunter's tropical medicine and emerging infectious diseases. (9th ed. ed.). New York: Saunders. p. 332. ISBN 9781416043904.
  7. Hoenen T, Groseth A, Falzarano D, Feldmann H (May 2006). "Ebola virus: unravelling pathogenesis to combat a deadly disease". Trends in Molecular Medicine 12 (5): 206–215. doi:10.1016/j.molmed.2006.03.006. PMID 16616875.
  8. Simpson DIH (1977). "Marburg and Ebola virus infections: a guide for their diagnosis, management, and control" (PDF). WHO Offset Publication No. 36. p. 10f.
  9. "Ebola Virus, Clinical Presentation". Medscape. Retrieved 30 July 2012.
  10. "Appendix A: Disease-Specific Chapters". Chapter: Hemorrhagic fevers caused by: i) Ebola virus and ii) Marburg virus and iii) Other viral causes including bunyaviruses, arenaviruses, and flaviviruses. Ministry of Health and Long-Term Care. Retrieved 9 October 2014.
  11. Feldmann H, Geisbert TW (March 2011). "Ebola haemorrhagic fever". Lancet 377 (9768): 849–62. doi:10.1016/S0140-6736(10)60667-8. PMC 3406178. PMID 21084112.
  12. Fisher-Hoch SP, Platt GS, Neild GH, Southee T, Baskerville A, Raymond RT, Lloyd G, Simpson DI (November 1985). "Pathophysiology of shock and hemorrhage in a fulminating viral infection (Ebola)". J. Infect. Dis. 152 (5): 887–894. doi:10.1093/infdis/152.5.887. PMID 4045253.
  13. Hoenen T, Groseth A, Feldmann H (July 2012). "Current Ebola vaccines". Expert Opin Biol Ther 12 (7): 859–72. doi:10.1517/14712598.2012.685152. PMC 3422127. PMID 22559078.
  14. Kuhn JH, Becker S, Ebihara H, Geisbert TW, Johnson KM, Kawaoka Y, Lipkin WI, Negredo AI, Netesov SV, Nichol ST, Palacios G, Peters CJ, Tenorio A, Volchkov VE, Jahrling PB (December 2010). "Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations". Archives of Virology 155 (12): 2083–103. doi:10.1007/s00705-010-0814-x. PMC 3074192. PMID 21046175.
  15. Spickler, Anna. "Ebolavirus and Marburgvirus Infections".
  16. "About Ebola Virus Disease". CDC. Retrieved 18 October 2014.
  17. Funk DJ, Kumar A (November 2014). "Ebola virus disease: an update for anesthesiologists and intensivists". Can J Anaesth. doi:10.1007/s12630-014-0257-z. PMID 25373801.
  18. "Ebola (Ebola Virus Disease) Transmission". CDC. 5 November 2014. Retrieved 7 November 2014.
  19. Drazen, J.M.; Kanapathipillai R.; Campion E.W.; Rubin E.J.; Hammer S.M.; Morrissey S.; Baden L.R. (2014) "Ebola and Quarantine." N Engl J Med. October 27, 2014 Epub ahead of print PMID25347231 
  20. "Q&A on Transmission, Ebola". CDC. September 2014. Retrieved 3 October 2014.
  21. Donald G. McNeil Jr. (3 October 2014). "Ask Well: How Does Ebola Spread? How Long Can the Virus Survive?". The New York Times. Retrieved 24 October 2014.
  22. "How Ebola Is Spread" (PDF). Centers for Disease Control and Prevention (CDC). November 1, 2014.
  23. "Transmission". CDC. 17 October 2014. Retrieved 18 October 2014.
  24. Chowell G, Nishiura H (October 2014). "Transmission dynamics and control of Ebola virus disease (EVD): a review". BMC Med 12 (1): 196. doi:10.1186/s12916-014-0196-0. PMC 4207625. PMID 25300956.
  25. "CDC Telebriefing on Ebola outbreak in West Africa". CDC. 28 July 2014. Retrieved 3 August 2014.










cs

shopping